Média móvel O Indicador técnico de média móvel mostra o valor médio do preço do instrumento para um determinado período de tempo. Quando se calcula a média móvel, uma média do preço do instrumento para este período de tempo. À medida que o preço muda, sua média móvel aumenta ou diminui. Existem quatro tipos diferentes de médias móveis: Simples (também referido como Aritmética), Exponencial. Suavizado e ponderado. A média móvel pode ser calculada para qualquer conjunto de dados seqüenciais, incluindo preços de abertura e fechamento, preços mais altos e mais baixos, volume de negociação ou quaisquer outros indicadores. É freqüentemente o caso quando se utilizam médias móveis duplas. A única coisa em que médias móveis de diferentes tipos divergem consideravelmente umas das outras, é quando os coeficientes de peso, que são atribuídos aos dados mais recentes, são diferentes. No caso de nós estamos falando de média móvel simples. Todos os preços do período de tempo em questão são iguais em valor. A média móvel exponencial e a média móvel ponderada linear atribuem mais valor aos preços mais recentes. A maneira mais comum de interpretar a média móvel de preços é comparar sua dinâmica com a ação de preço. Quando o preço do instrumento sobe acima de sua média móvel, um sinal de compra aparece, se o preço cai abaixo de sua média móvel, o que temos é um sinal de venda. Este sistema de negociação, que se baseia na média móvel, não é projetado para fornecer entrada no mercado direito em seu ponto mais baixo, e sua saída direita no pico. Ele permite agir de acordo com a seguinte tendência: comprar logo após os preços atingem o fundo, e vender logo após os preços atingiram seu pico. As médias móveis também podem ser aplicadas aos indicadores. É aí que a interpretação das médias móveis dos indicadores é semelhante à interpretação das médias móveis de preços: se o indicador se eleva acima da média móvel, isso significa que o movimento do indicador ascendente deverá continuar: se o indicador cair abaixo da sua média móvel, Significa que é provável que continue indo para baixo. Aqui estão os tipos de médias móveis no gráfico: Média móvel simples (SMA) Média móvel exponencial (EMA) Média móvel suavizada (SMMA) Média móvel ponderada linear (LWMA) Você pode testar os sinais comerciais deste indicador criando um especialista Em Assistente MQL5. Simples, ou seja, a média móvel aritmética é calculada resumindo os preços do fechamento do instrumento ao longo de um certo número de períodos únicos (por exemplo, 12 horas). Este valor é então dividido pelo número de tais períodos. SMA SOMA (FECHAR (i), N) N Soma soma FECHAR (i) período de fechamento preço próximo N número de períodos de cálculo. Média Móvel Exponencial (EMA) A média móvel suavizada exponencialmente é calculada pela adição de uma determinada parcela do preço de fechamento atual ao valor anterior da média móvel. Com médias móveis exponencialmente suavizadas, os últimos preços de fechamento são de maior valor. A média móvel exponencial de P por cento será semelhante a: EMA (CLOSE (i) P) EMA (i - 1) (1 - P) De um período anterior P a percentagem de utilização do valor do preço. Média Móvel Smoothed (SMMA) O primeiro valor desta média móvel suavizada é calculado como a média móvel simples (SMA): SUM1 SUM (CLOSE (i), N) A segunda média móvel é calculada de acordo com esta fórmula: SMMA (i) (SMMA1 (N-1) FECHAR (i)) N As médias móveis sucessivas são calculadas de acordo com a fórmula abaixo: PREVSUM SMMA (i - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) N Sum SUM SUM1 soma total dos preços de fechamento para N períodos é contado a partir da barra anterior PREVSUM suavizado soma da barra anterior SMMA (i-1) suavizada média móvel da barra anterior SMMA (i) suavizada média móvel da barra atual (Exceto o primeiro) CLOSE (i) preço de fechamento atual N período de suavização. Após conversões aritméticas, a fórmula pode ser simplificada: SMMA (i) (SMMA (i - 1) (N - 1) FECHO (i)) N Média Móvel Ponderada Linear (LWMA) No caso da média móvel ponderada, De mais valor do que dados mais cedo. A média móvel ponderada é calculada multiplicando-se cada um dos preços de fechamento dentro da série considerada, por um determinado coeficiente de ponderação: LWMA SOMA (CLOSE (i) i, N) SUM (i, N) soma total dos coeficientes de peso N período de suavização. Indicador de Regressão Linear O Indicador de Regressão Linear é utilizado para a identificação de tendências e tendência seguinte de forma semelhante às médias móveis. O indicador não deve ser confundido com linhas de regressão linear que são linhas retas montadas em uma série de pontos de dados. O Indicador de Regressão Linear traça os pontos finais de toda uma série de linhas de regressão linear desenhadas em dias consecutivos. A vantagem do Indicador de Regressão Linear sobre uma média móvel normal é que ela tem menos atraso do que a média móvel, respondendo mais rapidamente às mudanças de direção. A desvantagem é que é mais propenso a whipsaws. O Indicador de Regressão Linear é adequado apenas para negociação de fortes tendências. Os sinais são tomados de forma semelhante às médias móveis. Use a direção do Indicador de Regressão Linear para entrar e sair com um indicador de longo prazo como um filtro. Vá longo se o indicador de regressão linear virar para cima ou sair de um comércio curto. Ir curto (ou sair de um comércio longo) se o Indicador de Regressão Linear virar para baixo. Uma variação acima é entrar em negociações quando o preço cruza o Indicador de Regressão Linear, mas ainda sai quando o Indicador de Regressão Linear se torna negativo. Passe o mouse sobre as legendas dos gráficos para exibir os sinais de negociação. Vá longo L quando o preço cruza acima do Indicador de Regressão Linear de 100 dias enquanto os 300 dias estão subindo Sair X quando o Indicador de Regressão Linear de 100 dias virar para baixo Vá longamente de novo em L quando o preço cruza acima do Indicador de Regressão Linear de 100 dias Sair X quando o Indicador de Regressão Linear de 100 dias virar para baixo Vá L longo quando o preço cruza acima de 100 dias de Regressão Linear Sair X quando o indicador de 100 dias virar para baixo Vá L longo quando o Indicador de Regressão Linear de 300 dias aparecer após o preço cruzado acima O Indicador de 100 dias Saia de X quando o Indicador de Regressão Linear de 300 dias se desligar. A divergência bearish no indicador adverte de uma reversão principal da tendência. Escolhendo a melhor linha de tendência para seus dados Quando você quer adicionar uma linha de tendência a um gráfico em Microsoft Gráfico, você pode escolher alguns dos seis tipos diferentes de regressão de tendência. O tipo de dados que você tem determina o tipo de linha de tendência que você deve usar. Confiabilidade da linha de tendência Uma linha de tendência é a mais confiável quando seu valor R-quadrado está em ou próximo de 1. Quando você ajusta uma linha de tendência aos seus dados, o Graph calcula automaticamente seu valor R-quadrado. Se desejar, você pode exibir esse valor em seu gráfico. Uma linha de tendência linear é uma linha reta com melhor ajuste que é usada com conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se assemelha a uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. No exemplo a seguir, uma linha de tendência linear mostra claramente que as vendas de geladeiras aumentaram consistentemente ao longo de um período de 13 anos. Observe que o valor R-quadrado é 0.9036, que é um bom ajuste da linha para os dados. Uma linha de tendência logarítmica é uma linha curva melhor ajustada que é mais útil quando a taxa de mudança nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e / ou positivos. O exemplo a seguir usa uma linha de tendência logarítmica para ilustrar o crescimento populacional previsto de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.9407, que é um ajuste relativamente bom da linha para os dados. Uma linha de tendência polinomial é uma linha curva que é usada quando os dados flutuam. É útil, por exemplo, para analisar ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Uma linha de tendência polinomial de ordem 2 geralmente tem apenas uma colina ou vale. Ordem 3 geralmente tem uma ou duas colinas ou vales. Ordem 4 geralmente tem até três. O exemplo a seguir mostra uma linha de tendência polinomial Order 2 (uma colina) para ilustrar a relação entre velocidade e consumo de gasolina. Observe que o valor R-quadrado é 0.9474, que é um bom ajuste da linha para os dados. Uma linha de tendência de energia é uma linha curva que é melhor usada com conjuntos de dados que comparam medidas que aumentam a uma taxa específica, por exemplo, a aceleração de um carro de corrida em intervalos de um segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. No exemplo a seguir, os dados de aceleração são mostrados traçando a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-quadrado é 0.9923, que é um ajuste quase perfeito da linha para os dados. Uma linha de tendência exponencial é uma linha curva que é mais útil quando os valores de dados sobem ou caem a taxas cada vez mais altas. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. No exemplo a seguir, uma linha de tendência exponencial é usada para ilustrar a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-quadrado é 1, o que significa que a linha se encaixa perfeitamente os dados. Uma linha de tendência média móvel suaviza as flutuações nos dados para mostrar um padrão ou tendência mais claramente. Uma linha de tendência de média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha de tendência. Se Period for definido como 2, por exemplo, então a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, e assim por diante. No exemplo a seguir, uma linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Adicione uma linha de tendência ou de média móvel a um gráfico Aplica-se a: Excel 2017 Word 2017 PowerPoint 2017 Excel 2017 Word 2017 Outlook 2017 PowerPoint 2017 Mais. Menos Para mostrar tendências de dados ou médias móveis em um gráfico que você criou. Você pode adicionar uma linha de tendência. Você também pode estender uma linha de tendência além de seus dados reais para ajudar a prever valores futuros. Por exemplo, a seguinte linha de tendência linear prevê dois trimestres à frente e mostra claramente uma tendência ascendente que parece promissora para as vendas futuras. Você pode adicionar uma linha de tendência a um gráfico 2-D que não está empilhado, incluindo área, barra, coluna, linha, estoque, dispersão e bolha. Você não pode adicionar uma linha de tendência a um mapa de 3-D, radar, torta, superfície ou donut empilhados. Adicionar uma linha de tendência No gráfico, clique na série de dados à qual pretende adicionar uma linha de tendência ou uma média móvel. A linha de tendência começará no primeiro ponto de dados da série de dados que você escolher. Marque a caixa Trendline. Para escolher um tipo diferente de linha de tendência, clique na seta ao lado de Trendline. E clique em Exponencial. Previsão Linear. Ou média móvel de dois períodos. Para linhas de tendência adicionais, clique em Mais opções. Se escolher Mais opções. Clique na opção desejada no painel Formato da linha de tendência em Opções da linha de tendência. Se você selecionar Polynomial. Digite a potência mais alta para a variável independente na caixa Ordem. Se você selecionar Média Móvel. Digite o número de períodos a serem usados para calcular a média móvel na caixa Período. Dica: Uma linha de tendência é mais precisa quando seu valor R-quadrado (um número de 0 a 1 que revela quão próximos os valores estimados para a linha de tendência correspondem aos seus dados reais) é igual ou próximo de 1. Quando você adiciona uma linha de tendência aos seus dados , O Excel calcula automaticamente o seu valor R-quadrado. Você pode exibir esse valor em seu gráfico, marcando a caixa Mostrar o valor R-quadrado na caixa de gráfico (painel Formato da linha de tendência, Opções da linha de tendência). Você pode aprender mais sobre todas as opções de linha de tendência nas seções abaixo. Linhas de tendência linear Use este tipo de linha de tendência para criar uma linha reta com o melhor ajuste para conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se parecer com uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. Uma linha de tendência linear usa esta equação para calcular o ajuste de mínimos quadrados para uma linha: onde m é a inclinação eb é a interceptação. A seguinte linha de tendência linear mostra que as vendas de geladeiras têm aumentado consistentemente ao longo de um período de 8 anos. Observe que o valor R-squared (um número de 0 a 1 que revela quão próximos os valores estimados para a linha de tendência correspondem aos dados reais) é 0.9792, que é um bom ajuste da linha aos dados. Mostrando uma linha curva melhor ajustada, esta linha de tendência é útil quando a taxa de alteração nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e positivos. Uma linha de tendência logarítmica usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes e ln é a função de logaritmo natural. A seguinte linha de tendência logarítmica mostra o crescimento populacional predito de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.933, que é um ajuste relativamente bom da linha para os dados. Essa linha de tendência é útil quando os dados flutuam. Por exemplo, quando você analisa ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Tipicamente, uma linha de tendência polinomial da Ordem 2 tem apenas uma colina ou vale, uma Ordem 3 tem uma ou duas colinas ou vales, e uma Ordem 4 tem até três colinas ou vales. Uma linha de tendência polinomial ou curvilínea usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde b e são constantes. A seguinte linha de tendência polinomial da Ordem 2 (uma colina) mostra a relação entre a velocidade de condução eo consumo de combustível. Observe que o valor R-quadrado é 0,979, que é próximo a 1, portanto, as linhas um bom ajuste para os dados. Mostrando uma linha curva, esta linha de tendência é útil para conjuntos de dados que comparam medidas que aumentam a uma taxa específica. Por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. Uma linha de tendência de energia usa essa equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes. Nota: Esta opção não está disponível quando os dados incluem valores negativos ou zero. O gráfico de medição de distância a seguir mostra a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-quadrado é 0.986, que é um ajuste quase perfeito da linha para os dados. Mostrando uma linha curva, esta linha de tendência é útil quando os valores de dados sobem ou descem em taxas constantemente crescentes. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. Uma linha de tendência exponencial usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes e e é a base do logaritmo natural. A linha de tendência exponencial seguinte mostra a quantidade decrescente de carbono 14 num objecto à medida que envelhece. Observe que o valor R-quadrado é 0,990, o que significa que a linha se encaixa os dados quase perfeitamente. Moving Average trendline Esta linha de tendência evens out flutuações em dados para mostrar um padrão ou tendência mais claramente. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha. Por exemplo, se Período é definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto da linha de tendência, etc. Uma linha de tendência de média móvel usa esta equação: O número de pontos em uma linha de tendência de média móvel é igual ao número total de pontos na série, Número que você especificar para o período. Em um gráfico de dispersão, a linha de tendência é baseada na ordem dos valores x no gráfico. Para obter um resultado melhor, classifique os valores x antes de adicionar uma média móvel. A seguinte linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas.
No comments:
Post a Comment