Demonstração Médica em Movimento Introdução. Como você pode imaginar, estamos olhando algumas das abordagens mais primitivas da previsão. Mas espero que este seja, pelo menos, uma introdução útil a algumas das questões de informática relacionadas à implementação de previsões em planilhas. Nesse sentido, continuaremos começando no início e começaremos a trabalhar com as previsões de média móvel. Previsões médias móveis. Todos estão familiarizados com as previsões da média móvel, independentemente de acreditarem estar ou não. Todos os estudantes universitários fazem-no o tempo todo. Pense nos resultados do teste em um curso onde você terá quatro testes durante o semestre. Vamos assumir que você obteve um 85 no seu primeiro teste. O que você prever para a sua segunda pontuação de teste O que você acha que seu professor prever para o seu próximo resultado do teste? O que você acha que seus amigos podem prever para o seu próximo resultado do teste? O que você acha que seus pais podem prever para a próxima pontuação do teste Independentemente de Todos os blabbing que você pode fazer para seus amigos e pais, eles e seu professor provavelmente esperam que você consiga algo na área dos 85 que você acabou de receber. Bem, agora vamos assumir que, apesar de sua auto-promoção para seus amigos, você se sobreestimar e imaginar que você pode estudar menos para o segundo teste e então você obtém um 73. Agora, o que todos os interessados e desinteressados vão Preveja que você obtenha seu terceiro teste. Existem duas abordagens muito prováveis para que eles desenvolvam uma estimativa, independentemente de compartilharem com você. Eles podem dizer para si mesmos, esse cara está sempre soprando fumaça sobre seus inteligentes. Ele vai ter outro 73 se tiver sorte. Talvez os pais tentem ser mais solidários e dizer, muito, até agora você obteve um 85 e um 73, então talvez você devesse entender sobre obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festa E wessging wagging a doninha em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. Quantas dessas estimativas são, na verdade, as previsões médias móveis. O primeiro está usando apenas o seu resultado mais recente para prever seu desempenho futuro. Isso é chamado de previsão média móvel usando um período de dados. O segundo também é uma previsão média móvel, mas usando dois períodos de dados. Vamos assumir que todas essas pessoas que estão se abalando na sua mente gostaram de irritá-lo e você decide fazer bem no terceiro teste por suas próprias razões e colocar uma pontuação maior na frente do quotalliesquot. Você faz o teste e sua pontuação é realmente um 89. Todos, incluindo você, estão impressionados. Então, agora você começa o teste final do semestre e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você fará no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. O que você acredita é o Whistle mais preciso enquanto trabalhamos. Agora, retornamos à nossa nova empresa de limpeza, iniciada pela sua meia-irmã, chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados pela seção a seguir de uma planilha. Primeiro apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula celular para as outras células C7 até C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados para desenvolver nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Eu incluí o quotpast predictionsquot porque nós os usaremos na próxima página da web para medir a validade da previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula celular para as outras células C6 até C11. Observe como agora apenas as duas peças históricas mais recentes são usadas para cada previsão. Mais uma vez, incluí as predições quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são importantes para aviso prévio. Para uma previsão média móvel de m-período, apenas os valores de dados m mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer quotpast predictionsquot, observe que a primeira previsão ocorre no período m 1. Essas duas questões serão muito significativas quando desenvolvamos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão média móvel que pode ser usada de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que deseja usar na previsão e na matriz de valores históricos. Você pode armazená-lo em qualquer livro que desejar. Função MovingAverage (Historical, NumberOfPeriods) As Single Declarando e inicializando variáveis Dim Item As Variant Dim Counter As Integer Dim Accumulation As Single Dim HistoricalSize As Integer Inicializando variáveis Counter 1 Accumulation 0 Determinando o tamanho da matriz histórica HistoricalSize Historical. Count para o contador 1 para NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Histórico de acumulação de acumulação (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods O código será explicado na aula. Você deseja posicionar a função na planilha para que o resultado da computação apareça onde deveria gostar do seguinte. sourceforge. openforecast. models Classe MovingAverageModel Um modelo de previsão média móvel é baseado em uma série de tempo artificialmente construída em que o valor para um O período de tempo dado é substituído pela média desse valor e os valores para alguns períodos anteriores e sucessivos. Como você pode ter adivinhado a partir da descrição, este modelo é mais adequado para dados de séries temporais, isto é, dados que mudam ao longo do tempo. Por exemplo, muitos gráficos de ações individuais no mercado de ações mostram 20, 50, 100 ou 200 dias de média móvel como forma de mostrar tendências. Uma vez que o valor de previsão para um determinado período é uma média dos períodos anteriores, a previsão sempre aparecerá para trás ou aumenta ou diminui nos valores observados (dependentes). Por exemplo, se uma série de dados tiver uma tendência ascendente notável, então uma previsão média móvel geralmente fornecerá uma subestimação dos valores da variável dependente. O método de média móvel tem uma vantagem em relação a outros modelos de previsão, pois ele suaviza picos e depressões (ou vales) em um conjunto de observações. No entanto, também tem várias desvantagens. Em particular, este modelo não produz uma equação real. Portanto, não é tão útil como uma ferramenta de previsão de alcance médio. Só pode ser usado de forma confiável para prever um ou dois períodos para o futuro. O modelo de média móvel é um caso especial da média móvel ponderada mais geral. Na média móvel simples, todos os pesos são iguais. Desde: 0.3 Autor: Steven R. Gould Campos herdados da classe net. sourceforge. openforecast. models. AbstractForecastingModel MovingAverageModel () Constrói um novo modelo de previsão média móvel. MovingAverageModel (período int) Constrói um novo modelo de previsão média móvel, usando o período especificado. GetForecastType () Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. Init (DataSet dataSet) Usado para inicializar o modelo de média móvel. ToString () Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Métodos herdados da classe net. sourceforge. openforecast. models. WeightedMovingAverageModel MovingAverageModel Constrói um novo modelo de previsão média móvel. Para que um modelo válido seja construído, você deve chamar init e passar um conjunto de dados contendo uma série de pontos de dados com a variável de tempo inicializada para identificar a variável independente. MovingAverageModel Constrói um novo modelo de previsão média móvel, usando o nome dado como a variável independente. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. MovingAverageModel Constrói um novo modelo de previsão média móvel, usando o período especificado. Para que um modelo válido seja construído, você deve chamar init e passar um conjunto de dados contendo uma série de pontos de dados com a variável de tempo inicializada para identificar a variável independente. O valor do período é usado para determinar o número de observações a serem utilizadas para calcular a média móvel. Por exemplo, para uma média móvel de 50 dias onde os pontos de dados são observações diárias, o período deve ser definido como 50. O período também é usado para determinar a quantidade de períodos futuros que podem ser efetivamente previstos. Com uma média móvel de 50 dias, não podemos razoavelmente - com qualquer grau de precisão - prever mais de 50 dias além do último período para o qual os dados estão disponíveis. Isso pode ser mais benéfico do que, digamos, um período de 10 dias, onde podemos apenas prever razoavelmente 10 dias além do último período. Parâmetros: período - número de observações a serem utilizadas para calcular a média móvel. MovingAverageModel Constrói um novo modelo de previsão média móvel, usando o nome dado como a variável independente e o período especificado. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. Período - o número de observações a serem utilizadas para calcular a média móvel. Usado para inicializar o modelo de média móvel. Esse método deve ser chamado antes de qualquer outro método na classe. Uma vez que o modelo de média móvel não obtém qualquer equação para a previsão, esse método usa DataSet de entrada para calcular valores de previsão para todos os valores válidos da variável de tempo independente. Especificado por: init in interface ForecastingModel Overrides: init na classe AbstractTimeBasedModel Parâmetros: dataSet - um conjunto de dados de observações que podem ser usadas para inicializar os parâmetros de previsão do modelo de previsão. GetForecastType Retorna um nome de uma ou duas palavras deste tipo de modelo de previsão. Mantenha isso curto. Uma descrição mais longa deve ser implementada no método toString. Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, sempre que possível, qualquer parâmetro derivado usado. Especificado por: toString na interface ForecastingModel Overrides: toString na classe WeightedMovingAverageModel Returns: uma representação de cadeia do modelo de previsão atual e seus parâmetros. 7 Armadilhas de médias móveis Uma média móvel é o preço médio de uma segurança em um período de tempo especificado . Os analistas freqüentemente usam médias móveis como uma ferramenta analítica para tornar mais fácil seguir as tendências do mercado, à medida que os valores se movem para cima e para baixo. As médias móveis podem estabelecer tendências e medir o dinamismo. Portanto, eles podem ser usados para indicar quando um investidor deve comprar ou vender uma segurança específica. Os investidores também podem usar médias móveis para identificar pontos de suporte ou de resistência, a fim de avaliar quando os preços provavelmente mudarão de direção. Ao estudar os intervalos de negociação históricos, os pontos de apoio e resistência são estabelecidos onde o preço de uma garantia reverteu sua tendência ascendente ou descendente, no passado. Esses pontos são usados para fazer, comprar ou vender decisões. Infelizmente, as médias móveis não são ferramentas perfeitas para estabelecer tendências e apresentam muitos riscos sutis, mas significativos para os investidores. Além disso, as médias móveis não se aplicam a todos os tipos de empresas e indústrias. Algumas das principais desvantagens das médias móveis incluem: 1. As médias móveis atraem tendências de informações passadas. Eles não levam em consideração mudanças que podem afetar o desempenho futuro de segurança, como novos concorrentes, demanda maior ou menor de produtos na indústria e mudanças na estrutura gerencial da empresa. 2. Idealmente, uma média móvel mostrará uma mudança consistente no preço de uma segurança, ao longo do tempo. Infelizmente, as médias móveis não funcionam para todas as empresas, especialmente para aqueles em indústrias muito voláteis ou aqueles que são fortemente influenciados pelos eventos atuais. Isto é especialmente verdadeiro para a indústria do petróleo e as indústrias altamente especulativas, em geral. 3. As médias móveis podem ser distribuídas em qualquer período de tempo. No entanto, isso pode ser problemático porque a tendência geral pode mudar significativamente dependendo do período de tempo usado. Cortes de tempo mais curtos têm mais volatilidade, enquanto marcos de tempo mais longos têm menos volatilidade, mas não contam novas mudanças no mercado. Os investidores devem ter cuidado com o prazo que eles escolherem, para garantir que a tendência seja clara e relevante. 4. Um debate em curso é se deve ou não se colocar mais ênfase nos últimos dias no período de tempo. Muitos acham que os dados recentes melhor refletem a direção em que a segurança se está movendo, enquanto outros acham que dar alguns dias mais peso do que outros, prejudica incorretamente a tendência. Os investidores que usam diferentes métodos para calcular médias podem desenhar tendências completamente diferentes. (Saiba mais em Médias móveis simples vs. Exponenciais.) 5. Muitos investidores argumentam que a análise técnica é uma maneira sem sentido de prever o comportamento do mercado. Eles dizem que o mercado não tem memória e o passado não é um indicador do futuro. Além disso, há pesquisas substanciais para respaldar isso. Por exemplo, Roy Nersesian realizou um estudo com cinco estratégias diferentes usando médias móveis. A taxa de sucesso de cada estratégia variou entre 37 e 66. Esta pesquisa sugere que as médias móveis apenas produzem resultados aproximadamente metade do tempo, o que poderia fazer com que eles usassem uma proposta de risco para efetivamente sincronizar o mercado acionário. 6. Os valores mobiliários mostram frequentemente um padrão cíclico de comportamento. Isso também é verdade para as empresas de serviços públicos, que têm uma demanda constante por seu produto ano-a-ano, mas experimentam fortes mudanças sazonais. Embora as médias móveis possam ajudar a suavizar essas tendências, elas também podem esconder o fato de que a segurança está em um padrão oscilatório. (Para saber mais, veja Keep An Eye On Momentum.) 7. O objetivo de qualquer tendência é prever onde o preço de uma garantia será no futuro. Se uma segurança não é tendência em qualquer direção, ela não oferece uma oportunidade de lucrar com a compra ou venda a descoberto. A única maneira que um investidor pode lucrar seria implementar uma estratégia sofisticada baseada em opções que dependa do preço restante constante. A média final As médias móveis foram consideradas uma ferramenta analítica valiosa por muitos, mas para que qualquer ferramenta seja efetiva, você deve primeiro entender sua função, quando usá-la e quando não usá-la. Os perigos aqui discutidos indicam que as médias móveis podem não ter sido uma ferramenta efetiva, como quando usadas com títulos voláteis e como podem ignorar certas informações estatísticas importantes, como padrões cíclicos. Também é questionável como as médias móveis efetivas são para indicar com precisão as tendências de preços. Dadas as desvantagens, as médias móveis podem ser uma ferramenta mais utilizada em conjunto com outras. No final, a experiência pessoal será o último indicador de quão eficazes são realmente para o seu portfólio. (Para mais, veja As médias móveis adaptativas conduzem a melhores resultados)
No comments:
Post a Comment